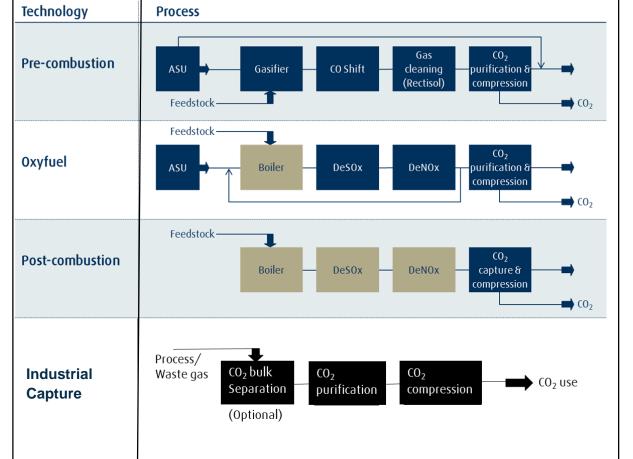


Slipstream pilot plant demonstration of an amine-based post-combustion capture technology for CO₂ capture from coal-fired power plant flue gas

DOE funding award DE-FE0007453 2016 NETL CO₂ Capture Technology Meeting

Krish R. Krishnamurthy Linde LLC August 8-12, 2016 Pittsburgh, PA

THE LINDE GROUP


Linde has options in all carbon capture pathways through commercial products or technology/solution development

Solvent based postcombustion CO₂ capture is currently a leading option:

THE LINDE GROUP

Linde

- Applicable to new or retrofit plants
- Capture all or part of flue gas
- Applied at large scale in other applications
- Novel solvents (e.g. OASE[®] blue) are stable in presence of flue gas contaminants & oxygen
- Significant progress made toward the capture cost goal

BASF / Linde partnership Delivering total solutions with confidence

We create chemistry

BASF Solvent/Process Expertise Basic Design Package Process performance

Emissions performance

Founded	1865
Sales (2015)	€70.5 billion
Employees	~112,000

PCC capture

THE LINDE GROUP

Linde Engineering Expertise Process optimization Basic/Detailed Engineering Package/EPC wrap

Founded	1879
Sales (2015)	€17.9 billion
Employees	~64,000

Project Budget : DOE funding and cost share (Amended Aug 2014)

THE LINDE GROUP

D • **BASF**

We create chemistry

Linde

Source	Budget Period 1 Dec 2011 – Feb 2013 Design & Engineer	Budget Period 2 Mar 2013 – Aug 2014 Procure & Build	Budget Period 3 Sep 2014 – Nov 2016 Operate & Test	Total
DOE Funding	\$2,670,173	\$11,188,501	\$2,360,173	\$16,218,847
Cost Share	\$667,543	\$4,335,102	\$1,472,506	\$6,475,151
Total Project	\$3,337,716	\$15,523,602	\$3,832,679	\$22,673,998

June 2016	Budget	Actual
Total	\$21.40m	\$20.87m
DOE	\$15.89m	\$15.37m
Cost share	\$ 5.51m	\$ 5.50 m

Cost share commitments: Linde: \$5,884,411 BASF: \$ 493,360 EPRI: \$ 97,379 Project participant(s) competency and contribution critical to successful outcome

Office of Fossil Energy	Project sponsorship and funding
SOUTHERN AN National Carbon COMPANY National Carbon Capture Center	Host site; Infrastructure & utilities for pilot plant build and op's
CEPCI ELECTRIC POWER RESEARCH INSTITUTE	Independent analysis of test results & TEA review
BASF We create chemistry	Technology owner, basic Design & solvent supply
THE LINDE GROUP	Overall program management, EPC, Operations & Testing

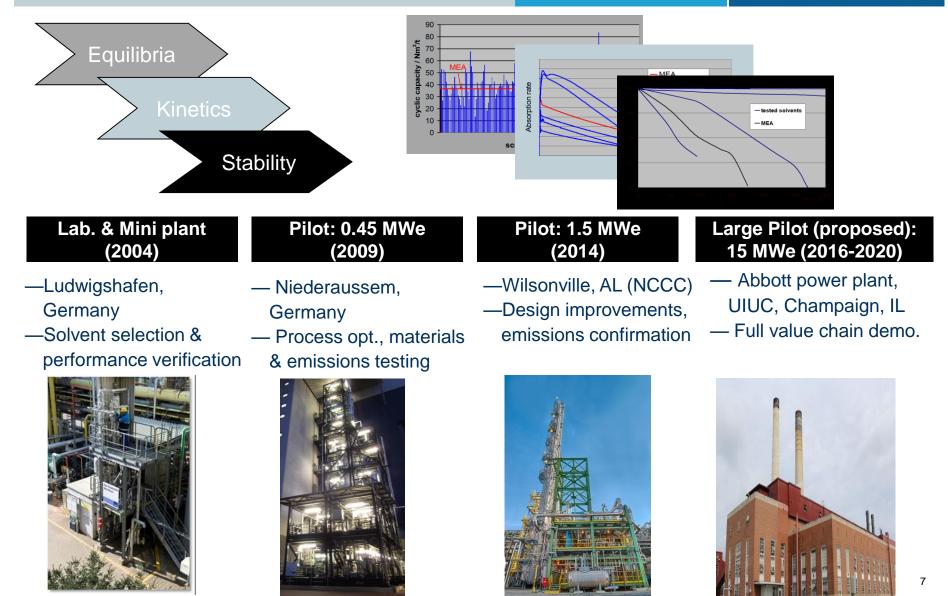
THE LINDE GROUP

Overall Objective

 Demonstrate Linde-BASF post combustion capture technology by incorporating BASF's amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

- Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
- Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
- Implement parametric tests to demonstrate the achievement of target performance using data analysis
- Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application

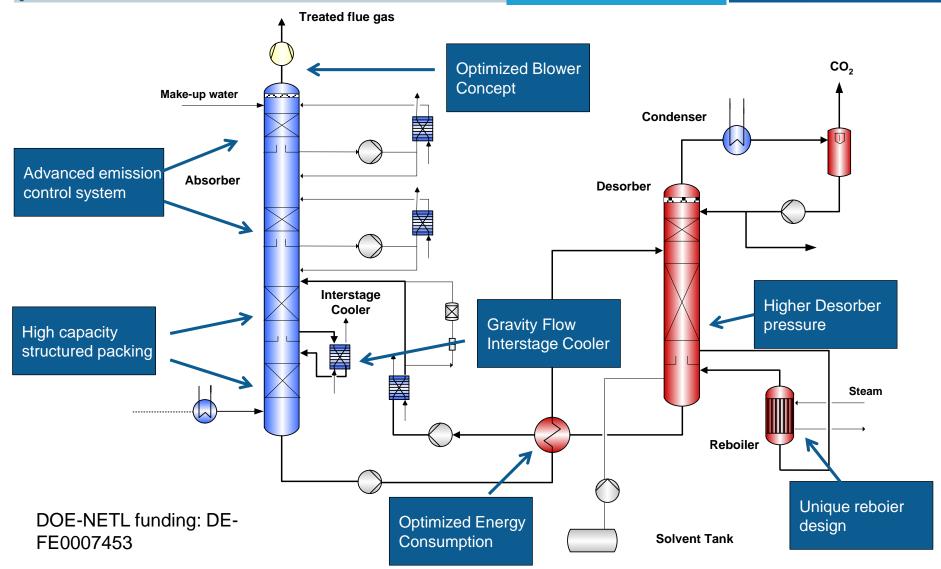

BASF OASE® blue technology roadmap Adopted and optimized for PCC applications

THE LINDE GROUP

D • BASF

We create chemistry

Linde



Linde-BASF novel amine-based PCC technology features: NCCC 1 MWe pilot

BASF We create chemistry

THE LINDE GROUP

Budget Period 3 is in progress with a target project completion date of Nov. 30, 2016

- Task 8: Pilot plant start-up (Jan-Mar 2015)
 - Stable operations achieved within one week
 - Excellent mass & energy balance closures
- Task 9: Parametric Testing
 - Two campaigns (May 1-Aug 15, 2015) and (Oct 1-Dec 22, 2015)
 - Range of parametric testing completed.
 Validated higher pressure regeneration.
 Addressed aerosol-based amine carry-over.
- Task 10: Long Duration Testing
 - Pilot plant restart: May 16, 2016;
 - Long duration test campaign: May 20-Jul 29, 2016
 - Continuous operation for 1520 hours
 - Flue gas flow: 10,500 lbs/hr (~1 MWe); 3.4 bar(a) Regen. Pressure
 - EPRI analysis performed: week of June 13, 2016
- Task 11: Final TEA & Commercialization Plan
 - Complete updated TEA and EH&S report
 - Pilot plant to be dismantled and removed

Linde-BASF 1 MW_e pilot plant at the NCCC

D - BASF

We create chemistry

THE LINDE GROUP

Linde

Wilsonville PCC Pilot Plant

Parametric Testing Performed

BASF We create chemistry

THE LINDE GROUP

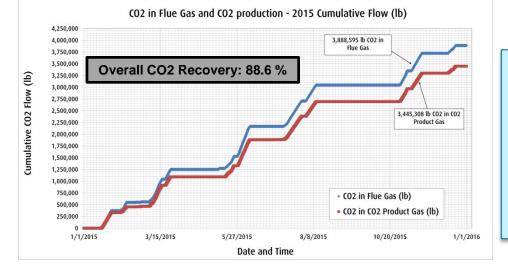
S.No.	Key variable	Status
1	Flue gas flow rate	7,500 to 15,750 lbs/hr
2	Flue gas temperature to absorber	86°F to 104°F
3	Treated gas temperature exit absorber	86°F to 115°F
4	Lean solution temperature to absorber	104°F to 140°F
5	Inter-stage cooler	On (104°F) /Off
6	Regeneration pressure	1.6 to 3.4 bars
7	Solvent circulation rate	Varied from 80 to 120%
8	CO ₂ capture rate	90% typical Varied from 85% to >95%

Pilot plant performance against targets: Accomplishments and next steps

THE LINDE GROUP

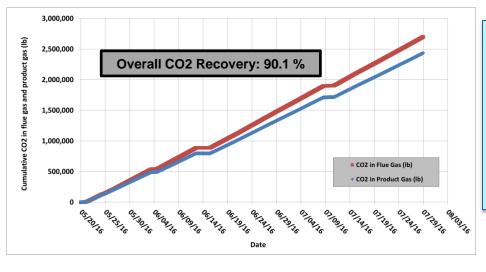
D - BASF

We create chemistry


Performance Attribute	Current achievement against target	Remarks
1. CO ₂ capture rate	>90% per target	Achieved. Capture rate can be optimized for specific energy.
2. CO ₂ purity	99.9% dry basis per target	Achieved. Low O_2 impurity level for EOR applications
3. Plant capacity	> 1.5 MWe per design target(>15,500 lbs/hr flue gas)	Achieved. Higher capacity testing performed ~10 days in May-June. Further testing in Nov 2015.
4. Regenerator steam consumption	~ 2.8 GJ/tonne CO_2 (same as Niederaussem consumption)	Energy as low as 2.7 GJ/tonne CO_2 observed.
5. Emissions control validation	Validation of dry bed (BASF patented) operation per design	Detailed isokinetic measurements (flue gas & treated gas) performed.
6. Regenerator operating pressure	- Testing performed up to 3.4 bars	Pressure parametric testing completed in Nov 2015
7. Validation of unique features	 (i) high capacity packing, (ii) gravity driven intercooler, (iii) blower downstream of abs. (iv) unique reboiler design. 	Design options for regenerator heat reduction through heat integration identified. Stripper interstage heater designs can result in ~ 2.3 GJ/tonne.

Linde Wilsonville PCC pilot plant -Cumulative CO₂ in Flue Gas and CO₂ Product Gas Flowrates (lb)

THE LINDE GROUP

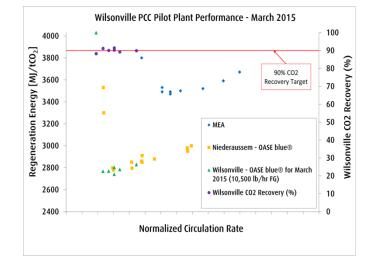


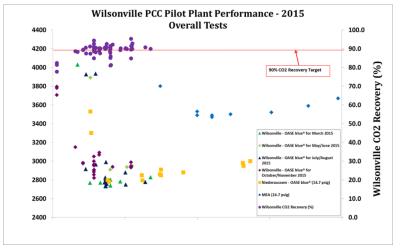
Parametric tests 2015: Operating hours

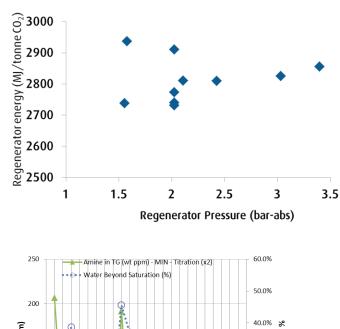
- Hours Flue gas testing: 2589
- Hours with steam on: 3841
- Hours of solvent circulation: 5096

Long duration tests 2016: Operating hours

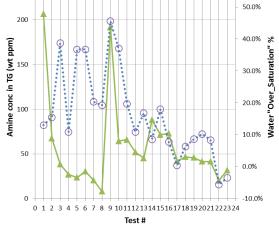
- Hours Flue gas testing: 1520
- Hours with steam on: 1532
- Hours of solvent circulation: 1668






Parametric testing (Jan-Dec 2015): Energy and emissions optimization

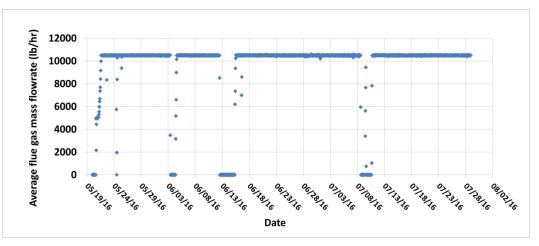
THE LINDE GROUP



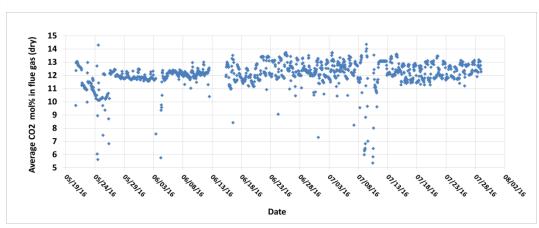
D • BASF

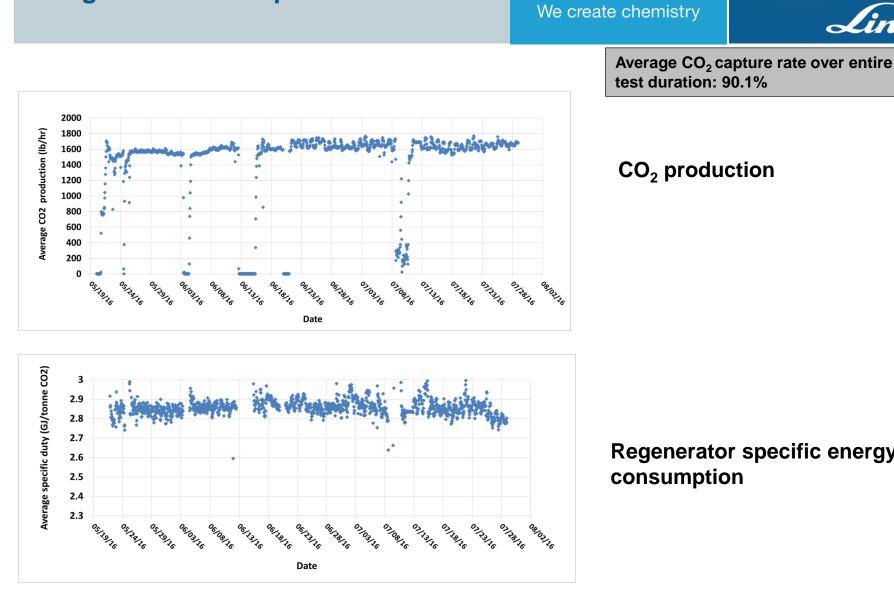
We create chemistry

Long duration testing: 1520 hours continuous & steady operation from May 20 – July 29, 2016


Linde

THE LINDE GROUP


Test Set-up


- FG flow rate: 10,500 lb/hr (~1 MWe)
- Flue gas CO₂ conc. : 12% target
- Regenerator pressure : 3.4 bar a
- Temp of FG to absorber : 35°C
- Absorber inter-stage cooling : 40°C
- Absorber exit treated gas temp: 40°C
- CO₂ Capture rate: 90% (target)

Flue gas flowrate

Flue gas CO₂ mole percent

Long duration test performance

🗆 • BASF

THE LINDE GROUP

Regenerator specific energy

Summary and concluding remarks

- Linde and BASF are partnering in the development of an advanced PCC technology incorporating BASF's novel amine-based process, OASE[®] blue, along with Linde's process and engineering innovations
- Performance demonstrated and long term stability validated on a 0.45 MWe lignite fired power plant flue gases (Niederaussem, Germany)
- Nominal 1 MWe pilot plant at the NCCC in Wilsonville, AL commissioned; parametric and long-duration testing completed have demonstrated stable operation, validation of functional features and achievement of key performance targets
- EPRI independent analysis performed during long-duration test campaign in June 2016.
- Technology has been selected by DOE for Phase 1 of the Large Pilot opportunity. Phase 2 proposal has been submitted with Univ. of Illinois as prime and the Abbott coal fired power plant as host site. This will mark the next stage of technology development and evolution.

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

DOE-NETL Project Manager: Andrew Jones NCCC host site support BASF: Sean Rigby, Gerald Vorberg & Gustavo Lozano Linde: Torsten Stoffregen, Annett Kutzschbach, Dirk Bauersfeld, Stevan Jovanovic, Devin Bostick, Makini Byron, Luis Villalobos, Drew Amis

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

THE LINDE GROUP

Thanks for your attention.